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The steady streaming flow due to vibration in capillary bridges is considered in the
limiting case when both the capillary Reynolds number and the non-dimensional
vibration frequency (based on the capillary time) are large. An asymptotic model is
obtained that provides the streaming flow in the bulk, outside the thin oscillatory
boundary layers near the disks and the interface. Numerical integration of this
model shows that several symmetric and non-symmetric streaming flow patterns
are obtained for varying values of the vibration parameters. As a by-product, the
quantitative response of the liquid bridge to high-frequency axial vibrations of the
disks is also obtained.

1. Introduction
Thermocapillary flows are of inherent interest in a variety of fields, for example in

pattern formation (Dubois et al. 1992; Vince & Dubois 1992; Daviaud & Vince 1993).
Also, in microgravity conditions buoyancy is essentially absent and thermocapillary
stress provides the main mechanism to maintain convection in non-isothermal con-
ditions. The resulting (steady or non-steady) thermocapillary flow is always present
in the melt when applying the float-zone technique for unidirectional semiconductor
crystal growth, and promotes undesirable non-uniformities in dopant distribution and
crystal striations (Jurish & Löser 1990). In order to improve crystal quality, several
methods have been suggested to minimize thermocapillary convection, namely float-
zone rotation (Fowlis & Roberts 1986), application of magnetic fields (Robertson
& O’Connor 1988; Cröll, Dold & Benz 1994) or gas jets (Dressler & Sivakumaran
1988), coating or partial covering of the melt (Lan & Kou 1991) and, more recently,
controlled vibration of the float zone (Anilkumar et al. 1993).

The last above-mentioned method is based on the well-known fact that mechanical
vibrations produce steady (or slowly varying) flows through parametric resonance
effects. As pointed out by Anilkumar et al. (1993), a good understanding of the
streaming flow due to vibration is essential before considering its combined effect
with thermocapillary stress. The main object of this paper is to analyse precisely
the qualitative and quantitative properties of the streaming flow in nearly inviscid
capillary bridges in one of the three distinguished limits (in fact, the more interesting
one) that must be analysed separately, as will be explained below.

Streaming flows produced by mechanical vibrations in finite geometries such as
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liquid bridges or liquid-filled containers are receiving an increasing interest in the
literature. But most works either dealt with fluid configurations without interfaces
(Zapyanov, Kozhoukharova & Iordanova 1988; Biringen & Peltier 1990; Riley 1992;
Yan, Ingham & Morton 1993; Farooq & Homsy 1994), or were modelled phe-
nomenologically (Lee, Anilkumar & Wang 1996), or were based on a strictly inviscid
analysis (Pierce & Knobloch 1994, and references given therein); the latter leads
to the well-known (Davey & Stewartson 1974) models which ultimately depend on
initial conditions (Knobloch & Pierce 1997). This has been so in spite of the fact that
Longuet-Higgins (1953), Phillips (1977) and Craik (1982) subsequently pointed out
several interesting basic ideas on the role of both the free-surface deformation and
viscosity (however small viscosity may be) on the generation of streaming flows. But
their ideas do not seem to have been followed systematically to obtain asymptotically
correct models that account for the structure of these flows in finite geometries when
free surfaces are present. Our previous work (Nicolás & Vega 1996; Nicolás, Rivas &
Vega 1997) and this paper amount to a systematic attempt in this direction, and cover
two of the three distinguished asymptotic limits that must be analysed separately
because both the physical mechanisms driving the streaming flow and the structure
of the leading oscillating flow are essentially different in each case. These limits are
explained below in terms of the liquid bridge geometry but they are not dependent
on this particular geometry and apply to other configurations as well. Here we focus
on the liquid bridge configuration because we are primarily interested in the practi-
cal application mentioned above, but the extension of the analysis below to related
problems (e.g. water waves in vibrated finite containers) is quite straightforward. The
main underlying ideas are expected to apply also to not so closely related problems.
For instance, recent experimental work by Weidman et al. (1997) has shown the ap-
pearance of novel two-dimensional vortical structures in vertically vibrated horizontal
soap films. These patterns seem to be associated with secondary streaming motions
like those analysed below.

If density is assumed to be strictly constant, the driving mechanism yielding stream-
ing flows essentially comes from vorticity-induced phase lags between the velocity
components that lead to a rectification of the oscillation. In capillary bridges the
mechanism depends on the orders of magnitude of the capillary or modified Reynolds
number, C−1 = (ρσR)1/2/µ (with ρ = density, σ = surface tension, µ = viscosity
and R = radius of the disks supporting the bridge) and the non-dimensional vi-
brating frequency, Ω = Ω̃(ρR3/σ)1/2 (where Ω̃ is the dimensional frequency). If, in
addition, C−1 � 1 (nearly inviscid limit) then vorticity is mainly confined to thin
viscous boundary layers in the oscillatory velocity field. The Stokes boundary lay-
ers near the disks produce a steady (or slowly varying) tangential forcing velocity
at the edge of the layers that was first calculated by Schlichting (1932), and the
boundary layer near the interface produces a tangential stress that seems to have
been first considered by Longuet-Higgins (1953). Since these two forcing mechanisms
are tangential to the edge of the oscillatory boundary layers, viscous effects (pro-
viding vorticity diffusion) cannot be ignored when calculating the streaming flow
in the bulk, however large the effective Reynolds number associated with this flow
may be. The streaming flow provides the main mechanism for vorticity transport
from the oscillatory boundary layers to the bulk. Notice that the forcing tangential
stress at the edge of the free surface is a priori the best mechanism to counter-
balance thermocapillary stress (which is also a forcing tangential stress at the free
surface); the forcing tangential velocity near the disks on the other hand is an
undesirable by-product. Three distinguished limits must be considered separately,
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depending on the order of magnitude of the non-dimensional vibrating frequency
Ω:

(A) If Ω ∼ 1 or, more generally, if C � Ω � C−1, then the steady stream-
ing flow exhibits a large variety of qualitatively different patterns, depending on (i)
the orders of magnitude of the forcing frequencies and amplitudes, (ii) whether Ω
is close to a natural inviscid frequency or not, and (iii) whether only one disk is
vibrated or both disks are; when both disks are vibrated (always with the same
frequency) the flow pattern also depends on (iv) the ratio of the vibrating am-
plitudes and (v) the phase shift. A weakly nonlinear analysis of nearly resonant
forced vibrations (with Ω ∼ 1) and of the resulting steady streaming flow was
given by Nicolás & Vega (1996) (see also Mollot et al. 1993 for related experi-
ments), while the steady streaming due to non-resonant vibrations was considered
by Nicolás et al. (1997). A brief summary of these theoretical results is now given
for convenience. If either (a) Ω is close to a natural inviscid frequency, or (b)
only one disk is vibrated, or (c) both disks are vibrated either in phase or in
counterphase, then the forcing tangential stress near the interface vanishes to the
leading order and the steady streaming flow is driven mainly by the forcing tan-
gential velocity near the disks, and exhibits several interesting patterns. But it is
not convenient to counterbalance thermocapillary flows because the price for any
eventual counterbalancing effect is to introduce large tangential velocities near the
disks. If instead Ω is not close to resonance and both disks are vibrated with the
same frequency and a phase shift different from 0 and π, then the forcing tangen-
tial stress near the free surface is non-zero and counterbalancing is feasible. But
undesirable tangential velocities near the disks are still present at leading order if
Ω ∼ 1. Fortunately, the forcing tangential stress dominates the forcing velocities as
Ω increases. Then by taking Ω as large as possible (but still small compared to
C−1) and the phase shift equal to π/2, a qualitatively antisymmetric steady stream-
ing flow is obtained that annihilates, with surprising accuracy, some thermocapil-
lary flows (Nicolás et al. 1997), namely those resulting from fixing the (different)
temperatures of the disks when the interface is thermally insulated provided that
the Prandtl number is appropriately small. Nevertheless, this steady streaming flow
cannot be symmetric and thus is not the appropriate one to counterbalance the
(symmetric) thermocapillary flows associated with the float-zone technique. But this
limitation disappears in the next limit, whose analysis is the main object of this
paper.

(B) If Ω ∼ C−1 or, more generally, if 1 � Ω � C−3, then our analysis below
shows that the oscillating and mean flows exhibit the following main features. The
oscillating velocity field is a superposition of two sub-fields that are nearly inviscid
except in oscillatory boundary layers. A first oscillating sub-field exhibits a wavelength
of the order of the size of the liquid bridge, and the second one consists of two
counterpropagating capillary wavetrains, with a very small wavelength, which affect
only a vicinity of the interface. Those wavetrains are reflected at and forced by the
vibrating disks; their amplitudes decay by viscous effects in a length of the order of
(ΩC)−1 and may be seen as a linear superposition of a large number of capillary
eigenmodes that are excited at the same time. The oscillatory boundary layers, near the
disks and the interface, produce steady forcing terms, as in limit (A) above. But now,
(a) the tangential stress near the interface due to the counterpropagating capillary
wavetrains dominates the remaining steady forcing terms and (b) the distribution
of this steady forcing stress along the interface may be controlled by playing with
the vibrating frequencies and amplitudes of the disks, and with the phase shift. The
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result is that now (c) several symmetric, antisymmetric and more general streaming
flow patterns are obtained by appropriately selecting the vibrating parameters, and
(d) the undesirable steady forcing velocities near the disks are essentially absent.
We must point out here that the oscillating velocity fields forced by high-frequency
axial vibrations in capillary bridges are of independent interest (response of the
bridge to high-frequency g-jitter) and have not been considered in the literature;
thus, a quantitatively precise analysis of the oscillating fields is also included in
this paper. Notice that there is an overlap between this limit and limit (A) above
(for, if 1 � Ω � C−1 then both limits apply) and thus some of the conclusions by
Nicolás et al. (1997) will be obtained again in this paper from a somewhat different
point of view.

(C) If Ω ∼ C−3 or, more generally, if Ω � C−1 then the viscous damping length
of the counterpropagating wavetrains is very small, of the order of (ΩC)−1. As a
consequence the outgoing wavetrain forced by the high-frequency vibration of each
disk survives only a small distance, and the associated steady forcing terms have
a little effect on the capillary bridge. Instead, the steady forcing terms due to the
other vibrating field, with a larger wavelength, come into play. But this limit is less
interesting in liquid bridges (from the practical point of view) than limits (A) and
(B) above because, if C 6 10−2 and the capillary time (ρR3/σ)1/2 is not much larger
than 1 s, as is usually the case in practice, then Ω ∼ C−3 ∼ 106 which means that the
forcing frequency is unrealistically large (∼ 106/2πHz).

The paper is organized as follows. The mathematical problem is formulated in §2,
where thermal effects are completely ignored, in order to focus on the structure of
the steady streaming flow due to vibration. An asymptotic model giving the steady
streaming in the bulk (i.e. outside thin layers near the disks and the interface) will
be obtained in §3, where a careful analysis of the leading oscillating flow will be also
presented (in §3.1); the validity limits of the asymptotic model will be considered in
§3.3. The above-mentioned counterpropagating capillary wavetrains will be discussed
in §4. The asymptotic model will be numerically integrated in §5 to analyse the several,
qualitatively different, streaming flow patterns that are obtained for varying values
of the vibrating parameters. Finally, some concluding remarks will be made in §6,
with some emphasis on the expected ability of the steady streaming flows obtained to
counterbalance thermocapillary convection.

2. Formulation
Let us consider a liquid bridge of length L, held by surface tension between

two parallel planar circular coaxial disks of equal radii R, that are vibrating in
the axial direction with the same frequency and small (compared to L) amplitudes.
The volume of the liquid equals that of the space in the cylinder bounded by the
disks and the free surface is assumed to be anchored at the borders of the disks. In
addition we neglect gravity and assume that the density ρ, viscosity µ and surface
tension σ are uniform and constant, and that ρ and µ are large compared to the
corresponding properties of the surrounding gas, which may be thus ignored in the
stress balances at the free surface. If we use R and (ρR3/σ)1/2 (the capillary time) to
non-dimensionalize lengths and time, then the governing equations (continuity and
momentum conservation) and boundary conditions (non-slip and anchorage of the
free surface at the disks, smoothness of the velocity and pressure fields at the axis of
symmetry, and kinematic compatibility and tangential and normal stress balances at
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the free surface) are

ur + r−1u+ wz = 0, (2.1)

ut + w(uz − wr) = −qr + C(urr + r−1ur − r−2u+ uzz), (2.2)

wt + u(wr − uz) = −qz + C(wrr + r−1wr + wzz), (2.3)

u = 0, w = h′±(t), f = 1 at z = ±Λ+ h±(t), (2.4)

u = wr = qr = 0 at r = 0, (2.5)

u = ft + fzw at r = f, (2.6)

(wr + uz)(1− f2
z ) + 2(ur − wz)fz = 0 at r = f, (2.7)

q − u2 + w2

2
+
ffzz − 1− f2

z

f(1 + f2
z )

3/2
= 2C

ur − (wr + uz)fz + wzf
2
z

1 + f2
z

at r = f, (2.8)

with appropriate initial conditions (that are assumed to be axisymmetric). Here,
a cylindrical coordinate system is used with associated unit vectors er , eϕ and ez;
uer +wez is the velocity, q is the stagnation pressure and the shape of the interface is
given by r = f(z, t).

The functions h±, giving the instantaneous position of the disks are assumed to be
given by

h±(t) = εβ±eiΩt + c.c., (2.9)

where ε > 0 is an appropriately small real parameter, the complex amplitudes β± are
of order unity, the frequency Ω is large, and c.c. stands for the complex conjugate, as
is usual. Notice also that the total volume of the liquid bridge is conserved (as a con-
sequence of (2.1), (2.4)–(2.6)) and, according to the assumption above, equals 2πΛ, i.e.∫ Λ+h+

−Λ+h−

f(z, t)2dz = 2Λ. (2.10)

In addition to the forcing vibrating parameters defined above, the problem depends
on the slenderness of the bridge, Λ = L/2R and the modified or capillary Reynolds
number, C−1 = (ρσR)1/2/µ. We shall consider the distinguished limit

Ω−1 ∼ C � 1, ε2Ω7/3 ∼ C. (2.11)

These conditions imply that the non-dimensional viscous dissipation length (1/(ΩC))
and the effective Reynolds number associated with the streaming flow (ε2Ω7/3/C) are
of order unity. But our results below apply provided that

ε2Ω1/3 � C and ε2Ω17/6C1/2 � 1, (2.12a)

as will be explained in §3.5, where it will be also seen that if the steady streaming
flow is symmetric (on the plane z = 0) then the second restriction in (2.12a) may be
relaxed to

εΩ � 1. (2.12b)

3. Derivation of the asymptotic model
The derivation of the asymptotic model giving the streaming flow in the bulk

requires first an analysis of the fairly complex structure of the leading oscillating
flow. Six distinguished regions must be considered in the liquid bridge (see figure 1):
(a) the bulk, that occupies most of the liquid bridge; (b) a nearly inviscid interface
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(f ) X–2/3 (d) (C/X)1/2 (f )
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z
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Figure 1. Sketch of the six distinguished regions in the liquid bridge.

sub-layer; (c) two nearly inviscid corner regions; (d) a viscous interface boundary layer;
(e) two viscous Stokes boundary layers; and (f) two viscous corner boundary regions.
The oscillatory velocity field exhibits a wavelength of order unity in region (a), and
consists of a pair of counterpropagating capillary wavetrains, with a wavenumber
k = Ω2/3 � 1, in region (b) (whose thickness is of the order of k−1 � 1). Those
wavetrains are reflected and forced in regions (c), whose characteristic size is also of
the order of k−1.

The oscillating flow in regions (a), (b) and (c) is considered in §3.1, and the
streaming flow in region (b) is analysed in §3.2, where the forcing tangential stress (at
the internal edge of this region) driving the streaming flow in the bulk is obtained.
Let us anticipate here that this is the main mechanism that produces the streaming
flow and essentially comes from the steady tangential stress at the internal edge of the
viscous boundary layer (d), first considered by Longuet-Higgins (1953); the steady
forcing tangential velocity at the edge of the oscillatory boundary layers (e) (first
considered by Schlichting 1932) is a higher-order effect in the limit considered in
this paper. But, for the sake of brevity, the fairly involved analysis of the oscillatory
boundary layers (d) and (e) is omitted† (a summary is given in Appendix B).

3.1. The oscillating flow in regions (a), (b) and (c)

In order to facilitate the reading of this section, some lengthy expressions have been
relegated to Appendix A.

The oscillatory solution in region (a) may be written as

u = εΩ
(
ieiΩtU(r, z) + c.c.+ HOT

)
, w = εΩ

(
ieiΩtW (r, z) + c.c.+ HOT

)
,

q − 1 = εΩ2
(
eiΩtQ(r, z) + c.c.+ HOT

)
,

}
(3.1)

where HOT stands for higher-order terms, of the order of ε2, and U, W and Q are
given by

Ur + r−1U +Wz = U − Qr = W − Qz = 0 in 0 < r < 1, −Λ < z < Λ, (3.2)

W = β± at z = ±Λ, U = Wr = 0 at r = 0, Q = 0 at r = 1. (3.3)

Equations (3.2) are obtained upon substitution of (3.1) into (2.1)–(2.3), and in (3.3)

† A detailed analysis of these boundary layers may be obtained from either the Editor or the
authors upon request.
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we are using the matching conditions with regions (b) and (c). The unique solution
of the linear problem (3.2)–(3.3) is given in the Appendix A. Notice that the solution
exhibits a logarithmic singularity near the edge of the disks, r = 1, z = ±Λ, which
will play a role below.

The inviscid sub-layer (b) is located near the interface, and has a thickness of the
order of k−1, where k > 0 is the wavenumber of the inviscid capillary waves, that
satisfy the dispersion relation

Ω2 = k3. (3.4)

In addition to the slow axial variable z, the fast stretched variables

ξ = k(1− r) and η = kz (3.5)

are used, and the oscillatory velocity and pressure fields in this region are written as

u = iΩεeiΩt
[
U(1− ξ/k, z) + u1 + k−1u2 + HOT

]
+ c.c.,

w = iΩεeiΩt
[
W (1− ξ/k, z) + w1 + k−1w2 + HOT

]
+ c.c.,

q − 1 = Ω2εeiΩt
[
Q(1− ξ/k, z) + k−1(q1 + k−1q2) + HOT

]
+ c.c.,

 (3.6)

where U, W and Q are as defined above and given by (A 1)–(A 4), uj , wj , and qj (for
j = 1 and 2) depend on z, ξ and η, and HOT stands for higher-order terms, small
compared to those displayed. The shape of the interface, f, will also appear in the
boundary conditions. For convenience, f is expanded as

f − 1 = εeiΩt
[
U(1, z) + f1 + k−1f2 + HOT

]
+ c.c., (3.7)

where U(1, z) is obtained from (A 1)–(A 4), and f1 and f2 may depend on z and η.
The first-order problem giving u1, w1, q1 and f1 is found to be

−u1ξ + w1η = u1 + q1ξ = w1 − q1η = 0, (3.8)

u1 = w1 = q1 = 0 at ξ = ∞, u1 − f1 = q1 + f1ηη = 0 at ξ = 0. (3.9)

The bounded solutions of the problem (3.8)–(3.9) are

u1 = Ae−ξ+iη + Be−ξ−iη, w1 = iAe−ξ+iη − iBe−ξ−iη,

q1 = Ae−ξ+iη + Be−ξ−iη, f1 = Aeiη + Be−iη,

}
(3.10)

where the complex scalars A and B depend on the slow axial variable z and remain
undetermined at this stage. Similarly, the second-order problem giving u2, w2, q2 and
fz is written and solved in Appendix A, where it is seen that the constants A and B
appearing in (3.10) must satisfy the following equations:

3Az − (4ω + i/2)A = 3Bz + (4ω + i/2)B = 0, (3.11)

which are obtained as solvability conditions. The real parameter ω is

ω = ΩC ∼ 1. (3.12)

When (3.10) is substituted into (3.6)–(3.7) it is seen that this part of the oscillatory
solution corresponds to a pair of counterpropagating wavetrains, with slowly varying
complex amplitudes A and B, a wavenumber k � 1 (see (2.11) and (3.4) and a
wave-speed (or phase velocity, Witham 1974)) Ω/k = k1/2 � 1; A and B provide the
local amplitudes and phases of the wavetrains. Equations (3.11) are the amplitude
equations that provide the spatial decay of |A| and |B| due to viscous dissipation,
and the spatial variation of the phases of A and B due to a first local correction



154 J. A. Nicolás, D. Rivas and J. M. Vega

of the wavenumber. In fact, if time derivatives in a slower time scale, t ∼ k1/2, were
included in the amplitude equations, then the terms 3Az and 3Bz would account for
propagation with the group velocity (which is equal to 3k1/2/2 in the original unscaled
variables); the other terms account for viscous dissipation and a first correction to
the wavenumber.

The amplitude equations (3.11) apply in region (b), i.e. whenever z + Λ� k−1 and
Λ − z � k−1. In order to calculate A and B we need two boundary conditions, that
will be obtained now from matching conditions between the oscillatory solutions in
regions (b) and (c). To this end, we need the asymptotic behaviour, as z → ±Λ, of
the oscillatory solution in region (b). For brevity, we only consider the asymptotic
behaviour of the shape of the interface, which is given in Appendix A ((A 10)–(A 11)).

Let us now consider the nearly inviscid corner regions (c). These regions are located
near the border of the disks, r = 1, z = ±Λ, and their size is of the order of k−1,
where k > 0 is as given by (3.4). Both regions exhibit the same asymptotic structure
and could be analysed at the same time. But, for clarity, we shall only describe in
detail that region near r = 1, z = Λ, in terms of the stretched variables

ξ = k(1− r) and η̃ = k(Λ− z). (3.13)

The oscillatory solution in this region is written as

u = iΩεeiΩtũ1 + c.c + HOT, w = iΩεeiΩtw̃1 + c.c.+ HOT,

q − 1 = (Ω2/k)εeiΩtq̃1 + c.c.+ HOT, f − 1 = εeiΩtf̃1 + c.c.+ HOT,

}
(3.14)

where the functions ũ1 = ũ1(ξ, η̃), w̃1 = w̃1(ξ, η̃), q̃1 = q̃1(ξ, η̃) and f̃1 = f̃1(η̃) are given
by

ũ1ξ + w̃1η̃ = ũ1 + q̃1ξ = w̃1 + q̃1η̃ = 0 in 0 < ξ < ∞, 0 < η̃ < ∞, (3.15)

w̃1 = β+, f̃1 = 0 at η̃ = 0, ũ1 − f̃1 = q̃1 + f̃′′1 = 0 at ξ = 0, (3.16)

|f̃1| diverges at most logarithmically as η̃ →∞. (3.17)

Equations (3.15) are obtained upon substitution of (3.13)–(3.14) into (2.1)–(2.3), and
in conditions (3.16)–(3.17) we are using matching conditions with regions (a), (b),
(d) and (e). This linear problem is solved in Appendix A ((A 12)–(A 13)), where the
following boundary condition for the complex amplitudes is found:

A = e−2iνB − ie−iν(γ1β+ − γ2β−) at z = Λ, (3.18)

upon application of matching conditions between the solution in this region (as
η̃ →∞) and that of region (b) (as z → Λ). Here, the real scalars ν, γ1 and γ2 are

ν = kΛ− π/3, γ1 =
√

3
[
(2/π) log k − b1 + b2 − δ1

]
/2 + 1

3
, γ2 =

√
3δ2/2, (3.19)

where δ1, δ2, b1 and b2 are as defined in (A 11), (A 14) and (A 16). The constants

γ1 −
(

2
√

3 log k
)/

π and γ2 are plotted vs. the slenderness in figure 2. A similar

analysis of region (c) near r = 1, z = −Λ yields

B = e−2iνA+ ie−iν(γ1β− − γ2β+) at z = −Λ. (3.20)

The first terms in the right-hand sides of the boundary conditions (3.18) and (3.20)
account for pure reflection of the wavetrains in region (c), with a complex reflection
coefficient e−2iν , whose argument yields a phase shift between the incoming and the
outgoing waves. Viscous dissipation in the Stokes boundary layer inside region (c)
would give a correction to the reflection coefficient that is seen to be small in the
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Figure 2. The constants γ1 −
(
2
√

3 log k
)
/π and γ2 (appearing in the boundary conditions (3.33)

and (3.35)) in terms of the slenderness Λ.

limit (2.11); thus we neglect this correction which yields a small absorption of the
incoming wave in region (c). The second term in the right-hand sides of (3.18) and
(3.20) depends linearly on the scaled forcing complex amplitudes β+ and β− (see (2.9))
and account for forcing in region (c). Two remarks about these forcing terms are now
in order.

(i) We have included a two-terms approximation of forcing, namely a leading-order
one that is proportional to log k and a first correction that is of order one; we are
instead ignoring terms that are of the order of k−1 log k. This has been done in order
to obtain a quantitatively good approximation of the complex amplitudes (which
would not be obtained if the O(1) term were ignored), as will be checked in §4.

(ii) A closer look at the matching conditions (in Appendix A) that led to the bound-
ary conditions (3.18) shows that the leading forcing term, namely that proportional
to β+ log k at z = Λ, accounts for direct forcing from the solid disk that is vibrated
around z = Λ and has a local nature. The second, O(1)-term instead accounts for
forcing from the bulk; thus it is not surprising that this term is non-local, namely it
does not only depend on the scaled forcing amplitude, β+, of the disk that is vibrated
around z = Λ, but it also depends on the forcing complex amplitude β− of the other
vibrating disk. Notice that since |γ1/γ2| ∼ log k � 1, non-locality is fairly weak; if
Λ & 1 then |γ2| becomes extremely small (see figure 2) and forcing becomes essentially
local.

3.2. The leading-order steady flow in region (b)

As in §3.1, the fast spatial variables (3.5) are used. The steady part of the solution in
this region is written as

u = ε2Ωkus1 + HOT + NST, wξ = ε2Ωkh1 + HOT + NST,

q = ε2ΩCk2qs1 + HOT + NST,

}
(3.21)

where, as above, HOT stands for higher-order terms, and NST stands for non-steady
terms. If (3.5) and (3.21) are inserted into (2.1)–(2.3), then the following equations
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and boundary conditions result:

us1ξξ − h1η = us1ξξ + us1ηη + qs1ξ = h1ξξ + h1ηη − qs1ξη = 0, (3.22)

us1 = −[iŪ(1, z)(Aeiη + Be−iη) + c.c.] at ξ = 0, (3.23)

h1 = −[Ū(1, z)(Aeiη − Be−iη) + c.c.]− 8(|B|2 − |A|2) at ξ = 0, (3.24)

u1ξ = h1ξ = 0 at ξ = ∞, (3.25)

where (in (3.23)–(3.25)) we are using matching conditions with regions (a) and (d)
(see (B 3) and (B 4) in Appendix B). Integration of (3.22)–(3.25) yields

us1 = −[iŪ(1, z)(Aeiη + Be−iη)e−ξ + c.c.],

h1 = −[Ū(1, z)(Aeiη − Be−iη)e−ξ + c.c.]− 8(|B|2 − |A|2).

}
(3.26)

These expressions for us1 and h1 show that the steady part of the velocity field in
this region consists of two parts. A first one corresponds to a stationary hydrodynamic
wave that exhibits a fast spatial oscillation in the axial direction, with a wavenumber
k � 1 that results from the spatially oscillatory terms in the boundary conditions
(3.23)–(3.24) and decays exponentially as ξ → ∞ (i.e. this wave does not penetrate
into the bulk). A second part (namely the last term in the expression for h1) exhibits
an axial wavelength of order unity and does penetrate into the bulk; in fact, this part
provides the main driving mechanism for the steady flow in the bulk.

Now, we only need to take into account (3.5), (3.21) and (3.26), and apply matching
conditions with the solution in the bulk to obtain the following boundary conditions
near the interface:

u = o(ε2Ωk) + NST, wr = 8ε2Ωk2(|B|2 − |A|2) + HOT + NST, (3.27)

at r = 1 (for the solution in the bulk).

3.3. The asymptotic model

Let us now collect the results above concerning the amplitudes, A and B, of the
counterpropagating wavetrains in region (b) and the steady flow in the bulk. The
amplitudes A and B are given by equations (3.11), with boundary conditions (3.18)
and (3.20), where the real constants ω, ν, γ1 and γ2 are given by (3.12) and (3.19),
and β+ and β− are the scaled complex amplitudes associated with disk vibration (see
(2.4) and (2.9)). Similarly, the leading steady parts of the velocity and pressure fields
in the bulk are given by (see (2.1)–(2.3))

usr + r−1us + wsz = 0, (3.28)

ws(usz − wsr) = −qsr + C(usrr + r−1usr − r−2us + uszz), (3.29)

us(wsr − usz) = −qsz + C(wsrr + r−1wsr + wszz). (3.30)

Notice that we are neglecting steady terms resulting from products of oscillatory
terms in the left-hand sides of (3.29)–(3.30); that assumption will be checked below.
The boundary conditions are

us = ws = 0 at z = ±Λ, us = wsr = qsr = 0 at r = 0, (3.31)

us = wsr + 8ε2Ωk2(|A|2 − |B|2) = 0 at r = 1, (3.32)

as obtained from matching conditions with the steady-state solution in regions (b)
and (e) (see (3.27), (B 6) and (B 7)).

Now the steady streaming flow in the bulk is governed by (3.28)–(3.32), and has an
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effective Reynolds number

Re = 8ε2Ωk2||A|2 − |B|2|/C. (3.33)

If the effective Reynolds number Re is large, the steady streaming flow exhibits
viscous boundary layers near the disks and the interface (at least); in the latter we
have

us ∼ CRe1/3, ws ∼ CRe2/3, lc ∼ Re−1/3, (3.34a)

where lc is the characteristic thickness of the layer; outside the viscous boundary
layers we have

us ∼ ws ∼ C Re2/3. (3.34b)

If instead Re is not large then viscous boundary layers are absent and we have
us ∼ ws ∼ C Re everywhere; notice that (3.34a) or (3.34b) also hold if Re ∼ 1 is not
small (they do not hold if Re� 1, but we shall not consider small values of Re below).

Now we have a look at the steps leading to (3.11), (3.18), (3.20) and (3.28)–(3.32)
to obtain the validity limits of this model:

(a) The characteristic thickness (C/Ω)1/2 of the oscillatory viscous boundary layer
near the interface must be small compared to the thickness (k−1) of the inviscid layer
near the interface, and the latter must be small as compared to 1 for our analysis
above to be valid. When taking into account the dispersion relation (3.4), those
conditions put two restrictions on the forcing frequency

1� Ω � C−3. (3.35)

(b) The leading nonlinear terms that have been neglected in the amplitude equations
(3.11) are given by iε2Ω2(α1|A|2 + α2|B|2)A + ik1/2α3w

s(1, z)A and −iε2Ω2(α1|B|2 +
α2|A|2)B + ik1/2α3w

s(1, z)B in the first and second equations respectively, where α1, α2

and α3 are real constants. These terms may be neglected provided that

Ω1/3Re2/3C � 1 or ε2Ω17/6C1/2 � 1, (3.36a)

as readily obtained when taking into account (3.4), (3.33) and (3.34a). If, in addition,
the steady flow is symmetric then ws(1, z) is an odd function and the associated
nonlinear terms may be eliminated by adding the quantity ik1/2α3

∫ z
0
ws(1, z)dz/3 to

the phases of A and B (notice that this change does not affect the forcing term in the
boundary condition (3.32)). In that case, condition (3.36a) may be relaxed to

C Re� Ω1/3 or εΩ � 1. (3.36b)

In addition, we have neglected dispersion which could have been taken into account
by adding the new terms −(3i/2k)Azz and (3i/2k)Bzz to the left-hand sides of (3.11)
(then a second pair of boundary conditions should be added at z = ±Λ, which would
be obtained from higher-order matching conditions with the solution in region (c)).
These new terms are smaller than those considered unless k−1|Azz| ∼ |A| and/or
k−1|Bzz| ∼ |B|, that is, unless intermediate scales, with a wavelength of the order of
k−1/2 (that is between the basic wavelength k−1 of the capillary wavetrains and the
size of the bridge) come into play. The analysis of these intermediate scales is a subtle
matter that requires inertia to be considered also (which has been neglected in (3.11));
see Martel & Vega (1996) for an analysis of these scales in a related problem. The
analysis by Martel & Vega (1996) suggests that intermediate scales can be ignored
unless nonlinearity is present and thus our assumption on neglecting dispersion seems
to be justified.
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(c) If the effective Reynolds number Re is large, then the thickness of the steady
viscous boundary layers associated with the steady streaming flow must be large
compared to k−1 (the thickness of region (b), which was used to obtain the boundary
conditions (3.32)). That condition holds provided that lc ∼ Re−1/3 � k−1, that is

Re� k3 = Ω2 or ε2 � CΩ−1/3. (3.37)

Similarly, the viscous boundary layers near the disks must be also much thicker
than (C/Ω)1/2 (that is, the thickness of region (e), which was used to derive the
boundary conditions (3.31) at z = ±Λ). But this condition puts a condition on the
effective Reynolds number that is less stringent than those imposed above.

(d) Steady terms resulting from products of oscillatory terms have been neglected
in momentum conservation equations, (3.29)–(3.30). These neglected terms are given
by

wa(usz − wsr) + [iΩUW̄ (usz − wsr) + c.c.]r, (3.38)

ua(wsr − usz) + [iΩUW̄ (usz − wsr) + c.c.]z, (3.39)

respectively, where

ua = −ε2Ω[i(ŪW )z + c.c.], wa = ε2Ωir−1(rŪW )r + c.c. (3.40)

Notice that the second terms in (3.38)–(3.39) derive from a potential and thus may be
eliminated by a redefinition of pressure. Then the neglected terms are small compared
to those displayed provided that ua and wa may be neglected compared to us and ws,
and according to our discussion above on the estimates (3.34b), this condition holds
provided that

ε2Ω � C Re2/3 or ε2 � C Ω5/3. (3.41)

Notice that we have also neglected steady terms resulting from products of oscillating
terms in region (b) (see §3.2); but a similar analysis to that above shows that those
terms may be in fact neglected provided that our restrictions already imposed above
hold.

(e) Equations (3.28)–(3.32) have been written in terms of the steady part of the
velocity field, (us, ws), which has been obtained as a time average of the velocity
field. That average does not need to coincide with the drift (or mass-transport)
velocity, (ud, wd), for kinematical reasons (see e.g. Batchelor 1967, where the drift
velocity is defined as the velocity associated with the time-averaged trajectories of
material elements). In fact, (ud, wd) (and not (us, ws)) must be used for comparison
with experiments because if the liquid bridge is observed with an exposure time that
is large compared to the oscillatory period, then the time average of the trajectories
of material elements is observed. The components of the drift velocity are given by

ud ' us + ua, wd ' ws + wa, (3.42)

where ua and wa are again given by (3.40). Thus if (3.41) holds, then we have ud ' us
and wd ' ws, and (3.28)–(3.32) gives the drift velocity in first approximation.

4. The counterpropagating capillary wavetrains
The oscillating flow in the bulk was calculated in §3.1 to be as given by (3.1)–(3.3),

(A 1)–(A 4) to a first approximation, and exhibits a wavelength of the order of the
length of the capillary bridge. This flow is readily seen to be standing (i.e. with a phase
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independent of position) if β+β̄− = real, that is, if either only one disk is vibrated
(β+β̄− = 0) or both disks are vibrated, either in phase (β+β̄− = real and positive) or
in counterphase (β+β̄− = real and negative). If, instead, the imaginary part of β+β̄−
is non-zero, then this flow is progressive.

The oscillating flow in the inviscid sub-layer (b) and the shape of the interface
r = f(z, t) were calculated in §3.1 to be given by (3.5)–(3.7) and (3.10). For brevity we
only rewrite here the expression for the shape of the interface,

f − 1 = εeiΩtF(z) + c.c.+ HOT, (4.1)

where

F(z) = A(z)eikz + B(z)e−ikz +
[
(β+ + β−)Uo(1, z) + (β+ − β−)Ue(1, z)

]
/2, (4.2)

with Uo(1, z), Ue(1, z), A(z) and B(z) given by (A 2)–(A 4), (3.11), (3.18) and (3.20).
Thus, to the leading order, the oscillating flow in region (b) consists of a mean field
and a pair of counterpropagating wavetrains. This flow is always progressive (i.e. its
phase depends on position) to a first approximation if ω = ΩC 6= 0. In the limiting
case when ω = 0 this flow is seen to be standing if β+β̄− = real and progressive
otherwise.

The solution of (3.11), (3.18) and (3.20) is

A = A0e
(8ω+i)z/6, B = B0e

−(8ω+i)z/6, (4.3)

where the complex constants A0 and B0 are

A0 =
−i(γ1β+ − γ2β−)eiν+(8ω+i)Λ/6 − i(γ2β+ − γ1β−)e−iν−(8ω+i)Λ/6

e2iν+(8ω+i)Λ/3 − e−2iν−(8ω+i)Λ/3
,

B0 =
−i(γ2β+ − γ1β−)eiν+(8ω+i)Λ/6 − i(γ1β+ − γ2β−)e−iν−(8ω+i)Λ/6

e2iν+(8ω+i)Λ/3 − e−2iν−(8ω+i)Λ/3
,

 (4.4)

with ω, ν, γ1 and γ2 given by (3.12) and (3.19).
For clarity we have considered in §3 only the time-independent version of the

amplitude equations (3.11). But time derivatives are readily added to obtain

−(2/(k1/2))At + 3Az − (4ω + i/2)A = (2/(k1/2))Bt + 3Bz + (4ω + i/2)B = 0, (4.5)

where we have just taken into account that the ratio of the coefficients of Az and Bz
over the coefficients of At and Bt respectively must be equal to the group velocity (see
Witham 1974), which equals dΩ/dk(= 3k1/2/2) and −dΩ/dk respectively (recall that
the wavenumber associated with B is negative, according to (3.10)), with Ω(k) = k3/2

being the dispersion relation (see (3.4)). Time derivatives will be used below only to
calculate the damping rate of the capillary wavetrains.

In order to ascertain that we have obtained a quantitatively good approximation
(as C → 0 and Ω → ∞) of the oscillatory solution and of the steady forcing term
yielding the steady streaming flow in the bulk, some numerical comparisons are now
made.

(a) The inviscid eigenfrequencies are readily calculated by first setting ω = β+ =
β− = 0 in (3.11), (3.18) and (3.20) and then requiring the resulting homogeneous
linear problem to have a non-trivial solution or, equivalently, by setting to zero the
denominators in (4.4) (and ω = 0), to obtain Λ/6 + ν = mπ/2 or, when taking into
account (3.4) and (3.19),

Ωm = [(3m+ 2)π/6Λ− 1/6]3/2, with m = integer. (4.6)
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Figure 3. The tenth eigenfunction F10 for Λ = 1: as given by (4.7) (thick line) and as calculated in
Sanz (1985) (thin line).

The associated non-trivial solution is given by A = eiz/6, B = ei(mπ−z/6), up to a
common complex factor. When taking into account (4.1)–(4.2) we readily obtain the
associated eigenfunction Fm (yielding the shape of the interface in the linear, resonant
response as f − 1 = ε(eiΩmtFm + c.c.)) that is (recall that k = Ω2/3, see (3.4))

Fm = sin [(Ω
2/3
m + 1/6)z] = sin [(3m+ 2)πz/6Λ] if m is odd,

Fm = cos [(Ω
2/3
m + 1/6)z] = cos [(3m+ 2)πz/6Λ] if m is even,

}
(4.7)

up to a constant, complex factor. For illustration, in figure 3 we compare this
expression for Fm with that calculated by the semi-analytical method due to Sanz
(1985) (which is essentially exact) for Λ = 1 and m = 10 (the arbitrary constant has
been chosen to be real and such that both expressions coincide at z = 0). Notice that
the approximation is quite good except near the disks, z = ±Λ; the latter was to be

expected because if |z∓Λ| ∼ Ω−2/3
m then the solution in region (c) (given by (3.14) and

(A 12)–(A 13)) applies instead of (4.7). Also, in table 1 we compare the approximation
(4.6) for Ωm with the essentially exact values calculated by the semi-analytical method
(Sanz 1985), for several modes and Λ = 1. Notice that (4.6) provides a fairly good
approximation even for the first inviscid eigenmode, in spite of the fact that it only
needs to apply for high-order modes.

(b) The damping rate at resonance is readily calculated from (4.5) to be

λm = 2Ω4/3
m C, (4.8)

where we have used (3.4) and (3.12), and Ωm is the associated inviscid eigenfrequency,
given by (4.6). In table 1 we compare the approximation (4.8) with the approximation
in Higuera, Nicolás & Vega (1994) (which applies provided that C � 1) for several
modes, three values of the capillary Reynolds number, C−1 = 102, 103 and 104, and
Λ = 1. Notice that the approximation in this paper is again quite good even for the
lower modes.

(c) The linear inviscid non-resonant response of the capillary bridge is given by
(4.1)–(4.2), where Uo(1, z), Ue(1, z), A(z) and B(z) are given by (A 2)–(A 4), (4.3) and
(4.4), with ω = 0. For illustration we take Λ = 1 and Ω = 104 (then ν ' 21.068,
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Inviscid eigenfreq. Damping rate C=0.01 Damping rate C=0.001 Damping rate C=0.0001

m Ωexact
m Ωapprox

m λapproxm1
λapproxm2

λapproxm1
λapproxm2

λapproxm1
λapproxm2

1 3.26 3.84 0.077 0.12 0.009 0.012 0.0014 0.012
2 7.52 8.06 0.265 0.162 0.0306 0.0323 0.0044 0.0032
3 12.80 13.23 0.552 0.626 0.0624 0.0625 0.0085 0.0063
4 18.78 19.17 0.934 1.026 0.1028 0.1026 0.0132 0.0103
5 25.47 25.81 1.416 1.526 0.1535 0.1525 0.0191 0.0153
6 32.75 33.08 1.993 2.124 0.2131 0.2124 0.0257 0.0212
7 40.63 40.93 2.671 2.821 0.2830 0.2820 0.0334 0.0232
8 49.02 49.31 3.445 3.616 0.3622 0.3616 0.0418 0.0362
9 57.93 58.20 4.318 4.510 0.4515 0.4510 0.0514 0.0451

10 67.31 67.56 5.290 5.504 0.5503 0.5504 0.0618 0.0550
15 120.63 120.84 11.623 11.948 1.196 1.196 0.1286 0.1195
20 183.36 183.54 20.432 20.861 2.080 2.086 0.2197 0.2086
25 254.25 254.41 31.707 32.241 3.215 3.224 0.3354 0.3224
30 332.45 332.60 45.440 46.088 4.595 4.609 0.4756 0.4609

Table 1. Inviscid eigenfrequencies and damping rates for several eigenmodes. Ωexact
m = as taken from

Sanz (1985); Ωapprox
m = approximation in this paper; λapproxm1

= as taken from Higuera et al. (1994);
λapproxm2

= approximation in this paper.
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Figure 4. The function F for Λ = 1, Ω = 104 and β+ = β− = 1: as given by (4.2) (thick line) and
as calculated in Nicolás et al. (1997) (thin line).

γ1 ' 1.9912 and γ2 ' 0.01175, as calculated from (A 21)). In figure 4 we compare the
function F associated with the linear response of the bridge, in the particular case
when β+ = β− = 1 (then F is real), as calculated above (thick line) and as calculated
by means of the approximation by Nicolás et al. (1997) (thin line), which is essentially
exact. Notice that (as in figure 3 and for the same reason) the approximation for F
in figure 4 is quite good except near the disks, z = ±Λ.

From the quantitative comparisons above (and others not presented here for
brevity) we conclude that our approximation above to the oscillatory solution is quite
good provided that Ω > 100 and C 6 0.01.
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Finally, notice that if

β+/β− =
[
γ1 + γ2e

2iν+(8ω+i)Λ/3
]
/
[
γ1e

2iν+(8ω+i)Λ/3 + γ2

]
then A0 = 0 and one of the capillary wavetrains is absent (see (4.3)–(4.4)). That
value of the ratio of the vibrating amplitudes (|β+/β−|) and the phase shift (phase of
β+/β−) is precisely such that there is a perfect interference between the reflected and
forced wavetrains at the disk near z = Λ; then the outgoing wavetrain from that disk
disappears. Similarly, the quantity |A0|/|B0| (that measures the relative strength of
the counterpropagating wavetrains) may be continuously varied from zero to infinity
by appropriately chosing (in a non-unique way) the modulus and phase of β+/β−.
In particular, if β+ = ±β− (i.e. if both disks are vibrated either in phase or in
counterphase, with the same amplitude) then

|A0|2 = |B0|2 = (γ1 ∓ γ2)
2|β+|2/2[cosh (8ωΛ/3)± cos (2ν + Λ/3)]. (4.9)

If β− = 0, then

|A0|2 =
γ2

1 exp (8ωΛ/3) + γ2
2 exp (−8ωΛ/3) + 2γ1γ2 cos (2ν + Λ/3)

cosh (16ωΛ/3)− cos (4ν + 2Λ/3)

|β+|2
2

,

|B0|2 =
γ2

2 exp (8ωΛ/3) + γ2
1 exp (−8ωΛ/3) + 2γ1γ2 cos (2ν + Λ/3)

cosh (16ωΛ/3)− cos (4ν + 2Λ/3)

|β+|2
2

,

 (4.10)

while if β+ = 0 then (4.10) stand after substituting A0 by B0, and β+ by β−.
In the inviscid limit, when ω = 0, the following equation (that will be needed in
§5) holds:

|A0|2 − |B0|2 = (γ2
1 − γ2

2)[(β̄+β− − β+β̄−)e2iν+iΛ/3 + c.c.]/4 sin2 (2ν + Λ/3).
(4.11)

Notice that |A0|2− |B0|2 6= 0 if and only if the imaginary part of β+β̄− is non-zero or,
according to our remark at the beginning of this section, if and only if the oscillating
flow is progressive to a first approximation; in this case, the sign of |A0|2 − |B0|2 may
be controlled through the sign of the phase shift between the forcing vibration of the
disks, that is, the phase of β+β̄−.

5. The steady streaming flow in the bulk
Let us now consider the steady streaming flow driven by vibration of the disks.

As seen in §3.3, in a first approximation this flow is governed in the bulk by (3.28)–
(3.32), with the complex amplitudes A and B as given by (3.11), (3.18) and (3.20).
For convenience we re-scale the velocity components and pressure (that is now used
instead of the stagnation pressure for convenience) as

us = CUs, ws = CWs and qs =
(
(us)2 + (ws)2

)
/2 + C2P s,

and take into account the solution (4.3) of (3.11), (3.18) and (3.20) to rewrite (3.28)–
(3.32) as

Us
r + r−1Us +Ws

z = 0, (5.1)

UsUs
r +WsUs

z = −P s
r +Us

rr + r−1Us
r − r−2Us +Us

zz, (5.2)

UsWs
r +WsWs

z = −P s
z +Ws

rr + r−1Ws
r +Ws

zz, (5.3)

Us = Ws = 0 at z = ±Λ, Us = Ws
r = P s

r = 0 at r = 0, (5.4)

Us = Ws
r +K(e8ωz/3 − δe−8ωz/3) = 0 at r = 1, (5.5)
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where ω = ΩC (see (3.12)) and

K = 8ε2Ωk2|A0|2/C > 0, and δ = |B0|2/|A0|2 > 0, (5.6)

with A0 and B0 given by (4.4). Notice that for a fixed value of the capillary Reynolds
number C−1, the positive parameter ω may be arbitrarily chosen by selecting the
vibrating frequency Ω and, according to the remark at the end of §4, the positive
parameters K and δ may be also arbitrarily chosen by selecting (in a non-unique
way) the vibrating amplitudes of the disks and the phase shift. Also, we must
take into account the limitations derived in §3.3, which may be written as C �
ω � C−2 and K � max{Ω2, Ω−1/2C−3/2} (the second limitation may be relaxed to
K � max{Ω2, C−1Ω1/3} when the steady streaming flow is symmetric). If we assume
that 102 . C−1 . 104 then ω varies over a wide range and K may be safely taken as
large as 103. The asymmetry parameter δ will vary between 0 and 1 (for the problem
is invariant under the transformation δ → 1/δ, K → Kδ, z → −z and W → −W ).

The problem (5.1)–(5.5) is numerically solved below as follows. The pressure–
velocity formulation of the flow field is considered and the discretization is made
according to the finite volume method of Patankar (1980). The pressure-correction
method (Connel & Stow 1986) is used to solve the discretized equations obtained from
the governing equations. In particular, the simplec approximation of Van Doormaal &
Raithby (1984) is used. A central difference scheme is used to discretize the governing
equations (Minkowycz et al., 1988). The computational domain is divided into small
control volumes, whose size follows a logarithmic distribution that concentrates the
control volumes near the disks, their mid-plane, the centre of the liquid bridge and
the interface (i.e. in the steady viscous boundary layers when the Reynolds number
associated with the flow is large). The centres of these control volumes form the
grid used for the pressure, and the staggered grid system of Harlow & Welch (1965)
is considered for the components of the velocity vector. In the iterative procedure,
convergence is declared when the three variables, Us, Ws and P s satisfy simultaneously
the relative error criterion∑

|gij − g0
ij |
/∑

|gij | < 5× 10−5,

where the summation is over all control volumes, and g0
ij stands for the value at

the previous step. Also, in the nomenclature of Van Doormaal & Raithby (1984),
the value E = 8.0 is used for the relaxation parameter, and the number of control
volumes in [−Λ,Λ]× [0, 1] is 200× 100.

The solution of (5.1)–(5.5), depends only on the positive vibrational parameters ω,
K and δ that control respectively the steepness, the strength and the asymmetry of the
forcing tangential stress at the interface. Several parameter ranges are now considered.
For brevity, only the most representative numerical results will be explicitly given.

(a) If ω � 1(i.e. if Ω � C−1, see (3.12)) then the steady forcing tangential stress
at the interface is approximately constant (and equal to −K(1 − δ), see (5.5)) and
the steady streaming flow exhibits a unique toroidal eddy whose rotation sense
may be controlled by means of the asymmetry parameter δ (which in turn may be
controlled by the phase shift between the vibration of both disks, see the remark at
the end of §4 and (5.6)). For illustration, the axial velocity at the interface and the
streamlines are given with solid lines in figure 5 for the particular case Λ = 1, ω = 0
and K(1 − δ) = 103. For smaller values of K(1 − δ) the effect of convective terms
decreases, the eddy moves to the centre of the liquid bridge and the axial velocity at
the interface becomes more symmetric. That value of K(1− δ) may be obtained, for
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Figure 5. Comparison of high-frequency (solid lines) and low-frequency (dotted lines) models:
(a) free-surface velocity, (b) streamlines.

example, if Ω = 104 (that is between two consecutive inviscid eigenfrequencies, see
table 1), β+ = iβ− and

ε2|β+|2/C = [103/8Ωk2(γ2
1 − γ2

2)] sin (2ν + Λ/3) ' 6.19× 10−4, (5.7)

as obtained when taking into account (4.11), (5.6) and that ν ' 21.0679, γ1 ' 1.9912
and γ2 ' 0.01175, according to (A 21). Notice that the required vibration amplitude of
the disks is extremely small, ε|β+| ' 2.49× 10−2C1/2 = 7.87× 10−4 if C = 0.001. With
these particular values of the vibrational parameters we may calculate the steady
streaming flow by means of the asymptotic model derived by Nicolás et al. (1997)
that applies whenever Ω � C−1 (without the assumption Ω � 1). The resulting axial
velocity at the interface and the streamlines are plotted with dashed lines in figure
5. Notice that both approximations yield approximately the same flow, in spite of
the fact that the forcing tangential stress at the interface is significantly different (the
tangential stress in Nicolás et al. 1997 exhibits a fast oscillation around a constant
value while here it is approximately constant); this was to be expected because the
oscillation only yields a stationary wave that does not penetrate the bulk and exhibits
an axial velocity that is small compared to the axial velocity in the bulk, as seen
from the analysis in §3.2 above. These asymmetric flows are the appropriate ones
to counterbalance thermocapillary flows in half-zone liquid bridges (i.e. in liquid
bridges with the disks held at two different temperatures and the interface thermally
insulated), as was seen by Nicolás et al. (1997).

(b) If ω 6= 0 and δ = 1 then the flow pattern is symmetric and consists of a pair of
counter-rotating toroidal eddies that push the liquid along the interface from the disks
towards the centre of the liquid bridge. As either ω or K increases, the strength of the
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Figure 6. Free-surface velocity for Λ = 1, δ = 1. (a) K = 1000 and 8ω/3 = 0.5, 2, 4 and 5.
(b) 8ω/3 = 2 and K = 100, 500 and 1000.

steady streaming flow increases, as illustrated in figure 6 where the axial velocity at
the interface is plotted (i) for K = 103 and several values of ω, and (ii) for 8ω/3 = 2
and several values of K; the associated streamlines are not plotted because they
are qualitatively similar to each other (and to those in figure 7b below). Of course,
as the steepness parameter ω increases, the forcing tangential stress at the interface
becomes more and more localized near the disks and the two counter-rotating eddies
should move towards the disks. But in order to appreciate this effect the parameter
K must be varied in such a way that the net forcing tangential stress at the interface,∫ Λ
−Λ |wr(1, z)|dz, remains constant (for, if instead K remains constant then convection

increases as ω increases, the eddies are pushed away from the disks by convective
effects and this counterbalances the localization effect). This is illustrated in figure 7,

where
∫ Λ
−Λ |wr(1, z)|dz = 100 for all values of Ω.

(c) If ω 6= 0 then the flow pattern is as asymmetric as possible when δ = 0. In
this case the flow pattern exhibits a unique toroidal eddy that pushes the liquid along
the interface from z = Λ to z = −Λ. As in case (b), the strength of the steady
streaming flow increases as either ω or K increases, as illustrated in figure 8; the
associated streamlines are not plotted because they are again similar to each other
and to those in figure 9(b) below. If the net forcing tangential stress at the interface,∫ Λ
−Λ |wr(1, z)|dz, is kept constant and the steepness parameter ω is increased then the

eddy moves towards the corner r = 1, z = Λ, as happened in case (b) above, but for
brevity we do not plot streamlines showing this effect. These asymmetric flows are
not the appropriate ones to counterbalance asymmetric thermocapillary convection in
half-zone liquid bridges because now the forcing tangential stress (due to vibration)
at the free surface is far from being constant (unless ω � 1, but this limit leads us to
case (a) above).

(d) If ω 6= 0 and 0 < δ < 1 then the flow pattern is between those described
in the limits (b) and (c) above, and consists of a pair of unequal counter-rotating
toroidal eddies that push the liquid along the interface away from the disks, with
the smaller eddy increasing as δ increases. For illustration, the axial velocity at the
interface and the streamlines are plotted in figure 9 for Λ = 1, 8ω/3 = 2, K = 103

and five representative values of δ. As ω and/or K vary the conclusions in case (b)
above stand.

In order to illustrate the quantitative dependence of the streaming flow on the
forcing amplitude, the maximum value of the axial velocity at r = 1 has been plotted
vs. K (which in turn is proportional to the square of the vibrating amplitude, see (4.4)
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Figure 7. (a) Free-surface velocity for the values of the parameters in (b)–(d). (b)–(d) Streamlines
for Λ = 1, δ = 1 and (ω,K) = (0.5, 195.9), (5, 3.415) and (10, 0.04540) respectively.

and (5.6)) in figure 10, in two particular cases. The plot in figure 10(a) corresponds
to the case when only one disk is vibrated (for instance, that near z = Λ and then
β+ 6= 0, β− = 0), with Λ = 1 and ω = ΩC = 3/4. In addition we have taken C = 10−4.
Then Ω = 3

4
× 104 and K and δ are calculated from (A 21), (4.10) and (5.6) to be

K ' 1.4765× 1014ε2|β+|2, δ ' 0.0180.

Notice that even for K = 4 × 104 (which corresponds to a quite large value of the
effective Reynolds number associated with the streaming flow) the vibrating amplitude
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is quite small, and the limitations in §3.3 still hold. This plot shows that if K . 102

then the velocity is proportional to K , while for K & 103 the velocity is proportional
to K2/3, as anticipated in §3.3. The plot in figure 10(b) corresponds to the case when
both disks are vibrated either in phase or in counterphase (then β+ = ±β−), with
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Figure 10. Maximum velocity modulus as a function of K , for Λ = 1 and 8ω/3 = 2. (a) Vibration
of one disk (z = +Λ): δ = 0.0180. (b) Vibration of both disks in phase or counterphase: δ = 1.
Dotted lines correspond to asymptotes of slope 1 and 2/3.

Λ = 1 and ω = 3/4. If, as above, we take C = 10−4 and β+ = β− then

K ' 1.6608× 1014ε2|β+|2, δ = 1,

and exactly the same comments made above (in connection with figure 10a) apply
again.

6. Concluding remarks
We have considered the linear oscillating flow and the associated nonlinear steady

streaming flow resulting from high-frequency axial vibrations of a nearly inviscid
axisymmetric capillary bridge; we considered the distinguished limit Ω ∼ C−1 � 1,
where Ω is the non-dimensional forcing frequency based on the capillary time, and C−1

is the capillary Reynolds number, but our analysis applies whenever 1 � Ω � C−3

(two additional, essentially different distinguished limits apply as Ω ∼ 1 and as
Ω ∼ C−3, as explained in §1).

The leading oscillatory flow was obtained in §3.1, where up to six different regions
were considered in the liquid bridge. In particular, this flow was seen to exhibit a
O(1)-wavelength in the bulk and a wavelength k−1 = Ω−3/2 � 1 in a thin (with a
thickness of the order of k−1) nearly inviscid sublayer attached to the free surface,
where the oscillating flow consists of two counterpropagating wavetrains that travel
with a phase velocity Ω/k = k1/2 � 1 and do not penetrate the bulk. The steady
complex amplitudes A and B of these wavetrains were seen to obey a pair of
amplitude equations that are balances between a convective term accounting for the
group velocity (which equals 3k1/2/2 � 1), viscous damping (which yields a spatial
decay of the waves as they travel along the free surface) and a first correction to the
wavenumber (which produces a spatial variation of the local phase of the wavetrains).
We neglected nonlinearity (which includes a coupling effect of the streaming flow on
the vibrating flow), dispersion and other higher-order effects that were discussed in
§3.3. The wavetrains are reflected and forced in two nearly-inviscid corner regions
near the edges of the disks whose analysis, in §3.1, shows that the waves are purely
reflected (i.e. no part of the incoming wave is absorbed) to a first approximation,
and that the outgoing wave is forced by two mechanisms, namely, a direct forcing
from the nearby vibrating disk and a forcing from the bulk; the first mechanism
is weakly dominant (by a factor of the order of log k � 1) and local, while the
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second mechanism is non-local (i.e. forcing near one disk depends on the vibration
parameters of the other disk). The amplitude equations and boundary conditions
were discussed in §4 where it was seen that (i) our asymptotic approximations to
the damping rate, the reflection coefficient and the forcing mechanisms give quite
good results for not-large values of Ω and (ii) the quantitative shape of A and B is
quite sensitive to the vibration parameters (interference properties of the incoming
and outgoing waves near the disks playing a crutial role). Thus, the steady tangential
stress at the edge of the nearly inviscid sublayer, 8ε3Ωk2

(
|A|2 − |B|2

)
(see (3.35)),

which drives the streaming flow in the bulk, is also quite sensitive to the vibration
parameters. Thus, our careful analysis of the leading oscillating flow in §3.1 and §4
(which could be seen as secondary in this paper, albeit of its intrinsic interest) is
essential in order to get a quantitatively good approximation of the streaming flow
in terms of the parameters associated with the vibration of the disks (i.e. amplitudes,
frequencies and phase shift), which are the actual input of the physical problem.

The steady streaming flow was considered in §3.2 (where the steady tangential
stress at the internal edge of the nearly inviscid interface sublayer was obtained),
§3.3 (where the asymptotic model was derived) and §5 (where the streaming flow
structure was numerically calculated and discussed). In particular, we have seen that
the flow is only driven by the tangential stress resulting from the viscous oscillatory
boundary layer near the interface; the forcing tangential velocity at the edge of the
Stokes boundary layers near the disks has been seen to be a higher-order effect in
this limit. The model (3.11), (3.18), (3.20) and (3.28)–(3.32) was obtained in terms
of the time-averaged velocity, (us, ws), that was seen (at the end of §3.3) to coincide
to a first approximation with the drift velocity, associated with the time-averaged
trajectories of material elements. We have neglected in the momentum equations
forcing averaged terms resulting from the time average of products of first- and
third-order oscillatory terms in convective terms; this assumption was justified in
§3.3, where we also considered the assumptions associated with our assuming that
the thickness of the oscillatory, interface boundary layer is small compared to the
thickness of the nearly inviscid sublayer, and that the latter is small compared to the
thickness of the possible viscous steady boundary layers of the streaming flow (when
its effective Reynolds number is large).

Our discussion in §5 shows that both the strength and qualitative shape of the
streaming flow can be controlled quite effectively through the appropriate selection
of the vibration parameters. In particular, a large variety of symmetric and non-
symmetric flows, with varying intensity in their localization near the disks (or the
centre of the free surface) are obtained. This is a quite important difference of this
limit with the remaining two asymptotic limits considered in §1, which by no means
exhibit that wealth of behaviour.

Finally, let us make a brief comment of the ability of the streaming flows obtained
in §5 to annihilate thermocapillary flows. Qualitatively antisymmetric thermocapillary
flows (resulting from, e.g., fixing the temperatures of the disks, with a thermally
insulated free surface) may be quite effectively controlled in the limit ω = ΩC � 1, as
explained in §5, case (a); this is not surprising because of the results by Nicolás et al.
(1997). The interest of this result is somewhat limited because these thermocapillary
flows apply only in experiments. The flows appearing in the melt when using the float-
zone technique instead are essentially symmetric because they result from a more or
less symmetric heating of the interface, and cannot be annihilated in the other two
limits considered in §1. On the contrary, they can be annihilated with the streaming
flows studied in this paper because, if (as usually happens in practice) surface tension
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decreases with temperature, then thermocapillary stress pushes the liquid along the
interface from the centre towards the disks and this is precisely opposite to what
tangential stress resulting from vibration does (see figure 7b).

This research was supported by DGICYT and by the EEC Program on Human
Capital and Mobility, under Grants PB-93-0046 and CHRX-CT-93-0413.

Appendix A. Some algebraic expressions from §3
The unique solution of the linear problem (3.2)–(3.3) can be decomposed into its

odd and even parts, as

U =
[
(β+ + β−)Uo + (β+ − β−)Ue

]/
2,

W =
[
(β+ + β−)Wo + (β+ − β−)We

]/
2,

Q =
[
(β+ + β−)Qo + (β+ − β−)Qe

]/
2,

 (A 1)

that are readily calculated in semi-analytical form as

Uo = Qor , Ue = Qer, Wo = Qoz, We = Qez, (A 2)

Qo = z +
2

Λ

∑
m odd

I0(lmr)

l2mI0(lm)
cos (lm(z + Λ)), (A 3)

Qe =
3− 2Λ2 − 3r2 + 6z2

12Λ
− 2

Λ

∑
m even

I0(lmr)

l2mI0(lm)
cos (lm(z + Λ)), (A 4)

where I0 and I1 are the first two modified Bessel functions and lm = mπ/2Λ, for
m = 1, 2, . . . .

The second-order problem giving the terms u2, w2, q2 and f2 appearing in the
expansions (3.6) and (3.7) (for the oscillatory solution in region (b)) are given by

−u2ξ + w2η + u1 + w1z = u2 + q2ξ = w2 − q2η − q1z = 0, (A 5)

u2 = w2 = q2 = 0 at ξ = ∞, (A 6)

u2 − f2 − 2iωf1ηη = q2 + f2ηη + 2f1ηz + 2iωu1ξ = 0 at ξ = 0, (A 7)

where (see (2.11))

ω = ΩC ∼ 1, (A 8)

and in (A 6) and (A 7) we are using matching conditions with regions (a) and (d) (see
(B 3) and (B 5) in Appendix B).

Notice that there are two terms proportional to ω (which will yield a counterpart
accounting for viscous dissipation in (3.11) below) in the boundary conditions (A 7).
The first one, −2iωf1ηη , comes (through matching conditions) from the effect of the
oscillatory viscous interface boundary layer, and the second one, 2iωu1ξ , directly
comes from the viscous normal stress at the free surface (see (2.8)); notice that if
the first term is ignored (as frequently done in the literature, when a careful analysis
of the interface boundary layer is avoided) then the damping rate is underestimated
by a factor of 1/2. Now we only need to require the solution of (A 5)–(A 7) to be
bounded, as either ξ →∞ or |η| → ∞, to obtain the following solvability conditions:

3Az − (4ω + i/2)A = 3Bz + (4ω + i/2)B = 0. (A 9)

When taking into account (A 1)–(A 4), (3.5), (3.7) and (3.10), the following asymptotic
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behaviour of f is readily obtained:

f − 1 = ±εeiΩt

[(
2

π
log (Λ∓ z) + δ1

)
β± + δ2β∓

]
+εA(±Λ)eiΩt±ikΛ∓ik(Λ∓z) + εB(±Λ)eiΩt∓ikΛ±ik(Λ∓z) + c.c.+ HOT, (A 10)

as z → ±Λ, where HOT stands for higher-order terms and the real constants δ1 and
δ2 are

δ1 =
2

π
log

π

2Λ
− 1

4Λ
+

1

Λ

∞∑
m=1

I0(lm)− I1(lm)

lmI0(lm)
,

δ2 = − 2

π
log 2 +

1

4Λ
− 1

Λ

∞∑
m=1

(−1)m
I0(lm)− I1(lm)

lmI0(lm)
.

 (A 11)

The linear problem (3.15) and (A 12) (giving the leading-order part of the oscillatory
solution in region (c) near r = 1, z = Λ) is solved via sine- and cosine-Fourier
transforms as

q̃1 = a1(ξ + e−ξ cos η̃)

+a2

[
2

π

∫ ∞
0

(
e−kη̃ sin kξ

k2 + 1
+

k2e−kξ cos kη̃

(k + 1)(k3 − 1)

)
dk + e−ξ

(
sin η̃ +

2
√

3

9
cos η̃

)]

+β+

[
2

π

∫ ∞
0

e−kξ cos kη̃ + ξk cos k + k3 − 1

k2(k3 − 1)
dk − b1e

−ξ cos η̃ − η̃
]
, (A 12)

f̃1 = a1(cos η̃ − 1) + a2

[
2

π

∫ ∞
0

cos kη̃ dk

(k + 1)(k3 − 1)
+ sin η̃ +

2
√

3

9
cos η̃

]

+ β+

(
2

π

∫ ∞
0

cos kη̃ − cos k

k(k3 − 1)
dk − b1 cos η̃

)
, (A 13)

where the principal value must be taken in divergent integrals, a1 and a2 are arbitrary
complex constants and

b1 =
2

π

∫ ∞
0

(1− cos k)dk

k(k3 − 1)
' 0.043476 . (A 14)

For matching purposes we only need the asymptotic behaviour of f̃1 as η̃ →∞, which
is found to be given by

f̃1 = (2β+/π) log η̃ − (a1 − β+b2) + [a1 + (2
√

3/9)a2 − β+b1] cos η̃

+[2(a2 − β+)/3] sin η̃ + o(1), (A 15)

where

b2 = b1 + 2γ/π ' 0.41094; (A 16)

γ ' 0.577215 is the Euler constant and we have taken into account that∫ ∞
0

(k − 1)dk

(k + 1)(k2 + k + 1)
= 0.



172 J. A. Nicolás, D. Rivas and J. M. Vega

Now we only need to take into account (A 10), (3.13), (3.14) and (A 15), and apply a
matching condition between both expressions for f to obtain

a1 = [(2/π) log k + b2 − δ1]β+ − δ2β−, (A 17)

A(Λ)eikΛ + B(Λ)e−ikΛ = a1 + (2
√

3/9)a2 − β+b1, (A 18)

A(Λ)eikΛ − B(Λ)e−ikΛ = 2i(a2 − β+)/3, (A 19)

where the complex constant a2 remains arbitrary. If a2 is eliminated in (A 18) and
(A 19), and a1 is substituted from (A 17), then the following equation results:

A(Λ) = e−2iνB(Λ)− ie−iν(γ1β+ − γ2β−) (A 20)

where

ν = kΛ− π/3, γ1 =
√

3
[
(2/π) log k − b1 + b2 − δ1

]
/2 + 1/3, γ2 =

√
3δ2/2,

(A 21)

with δ1, δ2, b1 and b2 as given by (A 11), (A 14) and (A 16).

Appendix B. The viscous boundary layers (d), (e) and (f)
The size of these regions is of the order of (Ω/C)1/2, such that inertia and viscous

terms are comparable in momentum conservation equations. As pointed out at the
begining of §3 we omit the (fairly involved) analysis of these regions; it is briefly
summarized here.

In the interface boundary layer (d) we use the slow variable z and the fast stretched
variables

ζ = (Ω/C)1/2(f − r) and η = kz, (B 1)

that define a moving coordinate system attached to the interface. In addition, we use
the associated dependent variables u∗, w∗, p∗ and f∗, defined as

u = ft + (kfη + fz)w + εk(ΩC)1/2u∗, w = εΩw∗

q = 1 + (u2 + w2)/2 + εk2p∗, f = 1 + εf∗,

}
(B 2)

where f∗ = eiΩt[U(1, z) + f1 + k−1f2 + HOT] + c.c.+ NRT (see (3.7)). When these new
variables and the appropriate expansions for both the oscillatory and the steady parts
of u∗, w∗ and q∗ are inserted into (2.1)–(2.3) and (2.5)–(2.8), the resulting problems
are solved and the limit ζ →∞ is considered, the following asymptotic behaviour for
the solution in this region is found:

u = εΩieiΩt
[
U + f1 − k(C/Ω)1/2ζf1ηηηη + k−1(f2 + 2iωf1ηη)

]
+ c.c.

+ε2Ωk(if1ηf̄1ηηηη + c.c.) + NROT + HOT, (B 3)

wζ = −εk(C/Ω)1/2
[
iΩeiΩtf1η + c.c.+ εkΩ(6if1ηf̄1ηηηη + if1ηηf̄1ηηηη + c.c.)

]
+NROT + HOT, (B 4)

q − 1 = −εk2
[
eiΩt
(
−f1ηη + k(Ω/C)1/2ζ(U(1, z) + f1) + k−1(f2ηη + 2f1ηz − 2iωf1ηηηη)

)
+c.c.

]
+ HOT + NRT, (B 5)

as ζ → ∞, where NROT, NRT and HOT stand for non-resonant oscillatory terms,
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(depending on t as exp (imΩt), with m 6= ±1, 0), non-resonant terms (depending on t
as exp imΩt, with m 6= ±1) and higher-order terms than those displayed respectively.

A similar but much simpler analysis of the Stokes boundary layers (e) shows that
the solution in these regions satisfies

u = O(ε2Ω) + NST, (B 6)

w = εeiΩt(iΩβ± + HOT) + c.c.+ O(ε2Ω) + NROT, (B 7)

where NROT and HOT are as above, and NST stands for non-steady terms (depend-
ing on t as exp (imΩt), with m 6= 0).

The oscillatory viscous regions (f) provide higher-order terms, that need not be
considered.
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